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Abstract
In this paper we construct nonlinear partial differential equations in more than
three independent variables, possessing a manifold of analytic solutions with
high, but not full, dimensionality. For this reason we call them ‘partially
integrable’. Such a construction is achieved using a suitable modification of
the classical dressing scheme, consisting in assuming that the kernel of the basic
integral operator of the dressing formalism be nontrivial. This new hypothesis
leads to the construction of (1) a linear system of compatible spectral problems
for the solution U(λ; x) of the integral equation in three independent variables
each (while the usual dressing method generates spectral problems in one or
two dimensions); (2) a system of nonlinear partial differential equations in n
dimensions (n > 3), possessing a manifold of analytic solutions of dimension
(n − 2), which includes one largely arbitrary relation among the fields. These
nonlinear equations can also contain an arbitrary forcing.

PACS numbers: 02.30.Ik, 02.30.Jr
Mathematics Subject Classification: 37K10, 37K15, 35M99

1. Introduction

Since the discovery of the integrability of the Korteweg–de Vries equation [1], much
effort has been devoted to the study of direct techniques to construct and solve nonlinear
partial differential equations (PDEs). One of the most powerful of such techniques is the
dressing method, originally introduced in [2] and subsequently generalized in [3–6] (see also
[7, 8]), which is based on the existence of a linear analyticity problem, i.e. a Riemann–Hilbert
or a ∂̄ problem in some spectral variable λ for some matrix function U(λ; x), depending
parametrically on the space-time variables x = (x1, . . . , xn). (The ∂̄ problem was introduced,
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in the context of integrable systems, in [9, 10].) Such an analyticity problem is characterized
by a linear integral equation, whose unique solvability allows one to construct and solve an
overdetermined system of compatible linear spectral problems for U(λ; x), and, consequently,
a nonlinear system of PDEs in the independent variables x, for the coefficients of such a linear
system.

The manifold of the analytic solutions of the nonlinear PDEs constructed by the dressing
method is parameterized in terms of a proper number of arbitrary spectral functions, appearing
in the linear integral equation, which depend on n − 1 variables. Therefore the solution space
is full and we say that the nonlinear PDE is completely integrable. For instance, the solution
space of (1 + 1)-dimensional scalar systems like the Korteweg–de Vries and the nonlinear
Schrödinger equations has dimension one, being parameterized by an arbitrary function of
one variable, while the solution space of the (2 + 1)-dimensional generalizations of them, the
Kadomtsev–Petviashvili and the Davey–Stewartson equations, has dimensionality two, being
parameterized by an arbitrary function of two variables.

Motivated by the above considerations, in this paper we say that the dimensionality of the
space of analytic solutions of a system of PDEs is k, if the analytic solutions are parameterized
by a ‘sufficient number’ of arbitrary functions of k independent variables. For instance, if the
system of PDEs contains K equations involving first order ‘time’ derivatives of K functions,
then the ‘sufficient number’ is K. If k = n − 1, then the system is completely integrable.

One of the most outstanding open problems in the theory of integrable systems is the
construction of nonlinear PDEs in multi-dimensions (see, for instance, [12, 13]), i.e., in
more than three dimensions, which could be integrated using suitable extensions of the above
dressing procedure. Apart from few exceptional instances, among which one counts the self-
dual Yang–Mills equations [11] and the Plebanski heavenly equation [14] (see [15–18] and
[19, 20] for their integration schemes), no significant examples are known in the literature
[21].

The purpose of this paper is the construction of PDEs in more than three independent
variables, possessing a manifold of analytic solutions with high, but not full, dimensionality.
For this reason we call such PDEs ‘partially integrable’. This construction is achieved using a
suitable modification of the classical dressing scheme, consisting in assuming that the kernel
of the basic integral operator of the dressing formalism be nontrivial. As we shall see, this
new hypothesis leads to the construction of

1. a linear system of compatible spectral problems in three independent variables each,
for the eigenfunction U(λ; x), where λ is a vector spectral parameter (while the usual
dressing method generates spectral problems in one or two dimensions with scalar spectral
parameter);

2. partially integrable nonlinear PDEs in n dimensions, possessing a solution space of
dimension (n − 2).

A prototype example is given by the following four-dimensional system of two matrix
equations:

B2(q1, q1, q2)B−1
2 (q1, q2, q3) = B3(q1, q1, q2)B−1

3 (q1, q2, q3)

= B4(q1, q1, q2)B−1
4 (q1, q2, q3) (1)

for the three square matrix fields q1(x), q2(x), q3(x), supplemented by the ‘largely arbitrary’
relation

F(q1, q2, q3) = 0 (2)

among them, where the matrix blocks Bj are defined as

Bj (q1, q2, q3) ≡ q2xj − q2x1Bj − q2[q1, Bj ] − [Bj , q3], j = 2, 3, 4, (3)
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Bj , j = 2, 3, 4 are constant diagonal matrices different from the identity, and [·, ·] is the usual
commutator of matrices. In the simplest case, the largely arbitrary relation (2) can be chosen
to be an equation defining one of the fields, say q3, to be any given function γ (x) (in general,
a generalized function), interpretable as an ‘external arbitrary forcing’:

F : q3(x) = γ (x). (4)

As we shall see in the following, equations (1)–(4) possess a manifold of analytic solutions of
dimension two.

The above closed system of equations (1)–(2) share with the other models constructed in
this paper the following properties.

1. The existence of a nontrivial kernel of the basic integral equation implies that the solutions
constructed by the dressing depend on an arbitrary function f (x) of the coordinates; this
fact has the following important implications.

2. The nonlinear system of PDEs constructed by the dressing scheme possesses a
distinguished block structure (see (1)) and is under-determined.

3. To close the system and fix its indeterminacy (or, equivalently, to fix f (x)), one has
to introduce an ‘external and largely arbitrary’ relation among the fields (see (2)). If,
for instance, such a relation (algebraic or differential) is linear, then the construction of
explicit solutions via the dressing algorithm remains linear as well. The simplest example
of linear relation is obtained imposing that one of the fields be a given function of the
coordinates, like in (4), interpretable as an external forcing.

4. The system of PDEs depends on two types of matrix fields, those obtained ‘saturating the
vector parameter λ′ of the solution U(λ; x) of the linear integral equation by ingredients
of the classical dressing method, whose dimensionality is constrained, and those obtained
saturating λ by a novel dressing function G(λ; x), whose dimensionality is not constrained.
That is why the dimensionality of the solution space, (n − 2), can be arbitrarily large.

5. While integrable PDEs in low dimensions (2+1 or less) are the compatibility of
overdetermined systems of linear spectral problems, such a feature seems to be lost
for our higher-dimensional examples.

We remark that partially integrable equations of the type (1) are somehow connected to
the N-wave type systems; indeed the two equations

B2(q1, q1, q2) = B3(q1, q1, q2) = 0 (5)

are equivalent to the N-wave system in 2+1 dimensions for the field q1, obtained by eliminating
q2 from equations (5) (see also section 2.1). The construction of partially integrable
PDEs connected to other basic integrable systems, like those belonging to the Kadomtsev–
Petviashvili hierarchy, or those associated with the Davey–Stewartson equation, will be the
subject of a forthcoming paper.

We also remark that a different generalization of the dressing procedure, allowing to
construct a class of partially integrable PDEs which combine S and C integrability features,
has been already proposed in [22] (a nonlinear system is S integrable, like the KdV equation,
if it is solved via a linear integral equation; it is C integrable, like the Burgers equation, if it is
linearized by a simpler change of variables, like a contact transformation; see [23] for more
details on these definitions).

The paper is organized as follows. In section 2 we derive, for the sake of comparison,
the well-known N-wave system in (2+1)-dimensions, using the classical dressing method, and
we show that its solution space is full. Then in section 3 we explore the implications of the
existence of a nontrivial kernel of the basic integral operator of the dressing scheme, and we
construct examples of nonlinear n-dimensional PDEs possessing a space of analytic solutions
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of dimension n − 2. We also show that these equations do not seem to be the commutativity
condition of overdetermined systems of linear PDEs. In section 4 we show how to construct
an integral operator possessing a nontrivial kernel, and we use this result to characterize a large
class of analytic solutions of the partially integrable PDEs of this paper. A natural extension
of the algorithm presented in this paper is briefly mentioned in the final section 5.

2. Derivation of classical integrable systems using the dressing algorithm

The starting point of the dressing constructions contained in this paper is the linear integral
equation

�(λ; x) =
∫

�(λ,µ; x)U(µ; x) d�(µ) ≡ �̂U(λ; x), (6)

in the spectral variables λ,µ, for the unknown matrix function U. The given matrix functions
� and � are defined by some extra conditions, which fix their dependence on an additional
vector parameter x = (x1, . . . , xn), whose components are the independent variables of the
associated nonlinear PDEs. � is some largely arbitrary scalar measure in the µ-space. Apart
from �, all the functions appearing in this paper are Q × Q matrix functions.

We remark that no a priori assumption is made in (6) on the dependence of � on λ (this
general starting point has been used, for instance, in [24] and in [22]), to keep the structure of
� as much general as possible. Indeed, although in most of the cases such a dependence is
described by a Cauchy kernel, an indication that equation (6) is the manifestation of Riemann–
Hilbert and/or ∂̄ analyticity problems, there are examples (see [24] and [22]) in which more
general representations appear, indicating that the above analyticity problems could be a too
restrictive starting points.

Before developing, in sections 3, 4, the novel features of the dressing method, it is useful
to summarize the essential steps of the classical dressing method used to construct and solve
the classical three-dimensional N-wave system (18) (which is known to be an S-integrable
system), together with its solution space. Such a solution space is two dimensional (i.e., it is
complete), being parameterized by an arbitrary function of two variables.

2.1. S-integrable PDEs: the N-wave system

The basic assumption underlying all the known dressing procedures available in the literature
is that the operator �̂ in (6) be uniquely invertible; i.e., that

dim ker �̂ = 0. (7)

The x-dependence is introduced by the matrix equations

�xi (λ, µ; x) = �(λ; x)BiC(µ; x), i = 1, . . . , dim x, (8)

showing that the x-derivatives of the kernel � are degenerate matrix functions of the spectral
parameters, another basic feature of all known dressing algorithms, where Bi, i = 1, . . . , n,

are constant diagonal matrices, so at most Q of them may be independent. Due to the above
degeneracy, the compatibility of equations (8) leads to separate equations for � and C:

�xi Bj − �xj Bi = 0, i �= j, (9)

BjCxi − BiCxj = 0, i �= j, (10)

and one equation is the adjoint of the other. Without loss of generality we assume B1 = I ,
where I is the identity matrix.
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Replacing, in equation (9), � by �̂U , as indicated in (6), and using (8), one obtains the
following equation:

�̂LijU = 0, (11)

where

LijU ≡ Uxi Bj − Uxj Bi + UBivBj − UBjvBi, i, j = 1, . . . , dim x, i �= j (12)

and

v(x) ≡
∫

C(λ; x)U(λ; x) d�(λ). (13)

Then the property (7) implies that

LijU(λ; x) = 0, i, j = 1, . . . , dim x, i �= j (14)

or, explicitly

L21U = Ux2 − Ux1B2 − U [v, B2] = 0,

L31U = Ux3 − Ux1B3 − U [v, B3] = 0,
(15)

having chosen j = 1, i = 2, 3.
This is nothing but the well-known linear overdetermined system corresponding to the

N-wave equation in the three variables x1, x2, x3.
The associated complete system of nonlinear PDEs is simply obtained, in the dressing

philosophy, upon ‘saturating the parameter λ’ in equations (15) by the integral operator∫
d�(λ)C(λ; x)·:

L21v − [B2, v
1] = vx2 − vx1B2 − v[v, B2] − [B2, v

1] = 0,

L31v − [B3, v
1] = vx3 − vx1B3 − v[v, B3] − [B3, v

1] = 0.
(16)

It is written in terms of the square matrix fields v(x) and v1(x), where

v1(x) ≡
∫

Cx1(λ; x)U(λ; x) d�(λ). (17)

Eliminating v1 from these two equations, we get the celebrated N-wave system in three
dimensions:

[vx3 , B2] − [vx2 , B3] + B2vx1B3 − B3vx1B2 − [[v, B2], [v, B3]] = 0. (18)

The same equation may be derived directly from the compatibility condition of the
system (15).

Similarly, considering the equations Lj1U = 0 and Lk1U = 0 for any j �= k �= 1, one
derives the hierarchy of n-wave equations

[vxk , Bj ] − [vxj , Bk] + Bjvx1Bk − Bkvx1Bj − [[v, Bj ], [v, Bk]] = 0. (19)

We remark that, in the above dressing construction, the linear integral operator �̂ in (6)
acts from the left and, consequently, the partial differential operators Lij in (14) act from the
right, while, in the soliton literature, one usually makes the opposite choice.

Our choice is motivated by the fact that, as we shall see in sections 3, 4, in more
than 2 + 1 dimensions, the role played by the linear integral equation (6) seems to be more
fundamental than that played by the linear overdetermined system of PDEs. Indeed, while
integrable PDEs in 2+1 dimensions (or less) are characterized as the compatibility condition
of a linear overdetermined system of PDEs, such a basic property seems to be lost in multi-
dimensions. Instead, as we shall see in the following sections, the linear integral equation (6)
can generate nonlinear PDEs, together with their large manifold of analytic solutions, also in
the multidimensional context.
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2.2. Solution space

We now consider the manifold of particular solutions of equations (18), (19). The solutions
of equations (9) and (10) can be parameterized as follows:

�(λ; x) =
∫

�0(λ, k) ekB·x dk, (20)

C(µ; x) =
∫

eqB·xC0(µ, q) dq, (21)

where

B · x =
n∑

i=1

Bix
i, (22)

and where the spectral parameters λ,µ, k, q are necessarily scalars. Thus equations (8) yield

�(λ,µ; x) =
∫

�0(λ, k) e(k+q)B·xC0(µ, q)
dk dq

k + q
+ �(λ,µ), B1 = I, (23)

where the integration constant �(λ,µ) is chosen here to be δ(λ − µ).
It is simple to see, from the linear limit, that the solution space of equation (18), generated

by the dressing algorithm, is full. Indeed, in the linear limit: �(λ,µ) ∼ δ(λ−µ) and U ∼ �.
Take C0(λ, q) = δ(λ − q); then the solution v of the three-dimensional N-wave system (18),
which in the linear limit reads

v(x) ∼
∫

C(λ; x)�(λ; x) d�(λ) =
∫

eλB·x�0(λ, k) ekB·x dk d�(λ), (24)

is parameterized by the arbitrary matrix function �0(λ, k) of the two scalar spectral parameters
λ, k; then its solution space is two dimensional, and therefore it is complete.

We end this section remarking that the Cauchy kernel appearing in (23), obtained here as a
consequence of equations (20), (21) and (8), is a manifestation of the distinguished analyticity
properties of the solution U(λ; x) in the complex λ plane, in agreement with the well-known
derivations of the N-wave equation (18) from Riemann–Hilbert and /or ∂̄ problems [25–27].

3. Partially integrable PDEs in multi-dimensions

In this section we show how to construct partially integrable PDEs in n dimensions exhibiting
a space of analytic solutions of dimension (n − 2).

3.1. Generalization of the dressing algorithm

In section 2.1 we have constructed, from the general hypothesis (6), (7) and (8) underlying
the classical dressing algorithm, the integrable N-wave system in three dimensions. The main
obstacle to go to higher dimensions is clearly due to the fact that each linear problem LijU = 0,
as a consequence of (7), is two dimensional.

To increase the dimensionality of the linear problems, we then suppose that the kernel of
the operator �̂ is one dimensional:

dim ker �̂ = 1; (25)

i.e., the solution of the homogeneous equation associated with equation (6) is nontrivial:

0 = �̂H ⇔ H(λ; x) = Uh(λ; x)f (x), (26)
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where Uh(λ; x) is some nontrivial solution of the homogeneous equation �̂H = 0, f (x) is an
arbitrary matrix function of x, and λ,µ, ν are now vector spectral parameters whose dimension
is specified in section 4. Then the general solution of equation (6) reads

U(λ; x) = Up(λ; x) + Uh(λ; x)f (x), (27)

where Up(λ; x) is some particular solution of (6).
As a consequence of the novel assumption (25), equation (11) implies the following

equations for U:

LijU(λ; x) = (LnmU(λ; x))Aijnm(x), i �= j, n �= m, (28)

where Aijnm(x) are some matrix functions of x to be specified, reflecting the fact that two
solutions of the homogeneous equation �̂H = 0 differ by a matrix function of x, multiplied
from right.

Since the following cyclic permutation formula among three operators Lij holds:∑
cycl(ijk)

(LijM)Bk = 0, i �= j �= k, (29)

where M is an arbitrary square matrix, it follows that only (n − 1) operators Lij are linearly
independent. Therefore we take the operators {Lj1, j = 2, . . . , n} as elements of the basis,
and we consider the following subset of equations (28), involving only these elements:

Ej (λ; x) ≡ Lj1U(λ; x) − (L21U(λ; x))Aj (x) = 0, j = 3, . . . , n, (30)

Lj1U ≡ Uxj − Ux1Bj − U [v, Bj ], j = 2, . . . , dim x, (31)

where Aj(x) are some matrix functions to be defined.
We have established that, if dim ker�̂ = 1, then each linear equation (30) for the spectral

function U(λ; x) is three dimensional.
The associated nonlinear equations, obtained ‘saturating the parameter λ’ in

equations (30) by the integral operator
∫

d�(λ)C(λ; x)·, read

Lj1v − [Bj , v1] − (L21v − [B2, v
1])Aj = 0, j = 3, . . . , n, (32)

they are given in terms of the fields v(x) and v1(x), defined respectively in (13) and (17), and
of the matrices Aj(x). More explicitly, one obtains

vxj − vx1Bj − v[v, Bj ] − [Bj , v
1] − (vx2 − vx1B2 − v[v, B2]

− [B2, v
1])Aj = 0, j = 3, . . . , n. (33)

In order to express Aj(x) in terms of U and close the system, we introduce an external
dressing function G(λ; x), and the associated new matrix fields

w00(x) ≡
∫

G(λ; x)U(λ; x) d�(λ),

(34)

wj0(x) ≡
∫

Gxj (λ; x)U(λ; x) d�(λ), j > 0,

wij (x) ≡
∫

Gxixj (λ; x)U(λ; x) d�(λ), i, j > 0, wij (x) = wji(x). (35)

The equations for the fields wij can be derived by applying
∫

d�(λ)G(λ)· and∫
d�(λ)Gxn(λ)· to the linear equation (30), obtaining

Lj1w
n0 − wjn + w1nBj = (L21w

n0 − w2n + w1nB2)A
j , j = 3, . . . , dim x,

n = 0, 1, . . . , dim x. (36)
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Some of these equations can be taken as definition of Aj . But, to close the system, one
needs to introduce the following additional structures.
(a) Equations defining G(λ; x). Since G is an outer dressing function, these equations can be
a quite arbitrary system of compatible and solvable partial differential equations, either linear
or nonlinear, involving derivatives of any order and dimension. This freedom plays a key role
in allowing for a large solution space.
(b) An additional relation between all the matrix fields, which may be taken in quite arbitrary
form

F(v, v1, w00, wi0, wij ) = 0, i, j = 1, 2, . . . . (37)

This equation is needed to fix the arbitrary function f (x) of the variables xi appearing in the
solution of the inhomogeneous equation (6) (see equations (26), (27)). The relation (37) is
largely arbitrary; the only requirement is that it should give rise to a solvable equation for
f (x). Since U depends linearly on the arbitrary function f (x), all the fields depend linearly
on f as well. Indeed, using equations (13), (17), (34) and equation (27), one obtains

v(x) = hv
0(x) + hv

1(x)f (x), hv
0(x =

∫
C(λ)Up(λ) d�(λ),

hv
1 =

∫
C(λ)Uh(λ) d�(λ),

v1(x) = hv1

0 (x) + hv1

1 (x)f (x), hv1

0 =
∫

Cx1(λ)Up(λ) d�(λ),

hv1

1 =
∫

Cx1(λ)Uh(λ) d�(λ),

w00(x) = hw00

0 (x) + hw00

1 (x)f (x), hw00

0 =
∫

G(λ)Up(λ) d�(λ),

hw00

1 =
∫

G(λ)Uh(λ) d�(λ),

wi0(x) = hwi0

0 (x) + hwi0

1 (x)f (x), hwi0

0 =
∫

Gxi (λ)Up(λ) d�(λ),

hwi0

1 =
∫

Gxi (λ)Uh(λ) d�(λ),

wij (x) = hwij

0 (x) + hwij

1 (x)f (x), hwij

0 =
∫

Gxixj (λ)Up(λ) d�(λ),

hwij

1 =
∫

Gxixj (λ)Uh(λ) d�(λ),

(38)

where all the hs are known functions of x, and i, j = 1, 2, . . . . Using this fact, the following
types of relation (37) open different scenarios:

(1) F is an algebraic expression of its arguments, leading to an algebraic equation for f . The
simplest case is, of course, that of a linear equation, leading to a linear algebraic equation
for f (x). The simplest example of linear algebraic relation is obtained imposing that one
of the fields be a ‘given function of the coordinates, interpretable as an external forcing’.

(2) F is a multidimensional linear partial differential equation of any dimension and order,
either with constant or variable coefficients. This leads to a linear PDE for f (x) having
the same dimension and order, and always variable coefficients (due to the functions h in
equations (38)).

(3) F is a nonlinear PDE, whose dimension m is lower than the dimensionality n of the
system of PDEs. This leads to a nonlinear PDE for f (x) in m dimensions, but with
variable coefficients. In this case, the dressing procedure allows one to replace the
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nonlinear PDEs under investigation by a nonlinear PDE for f (x) in lower dimensions
(a ‘reduction of complications’).

Among all these cases, the most remarkable one is when F is a linear algebraic relation,
since f (x) can be found explicitly and the solution manifold may be constructed analytically
(see section 4.3 for more details on this point).

The equation defining G(λ; x), together with the relation (37) among the fields, provides
the completeness of the nonlinear system of PDEs for the fields v, v1 and wij generated by
the dressing.

3.2. Examples

In this section we consider some basic examples of partially integrable PDEs, corresponding
to special definitions of G(λ; x), and to particular relations (37).

3.2.1. The simplest nonlinear partially integrable PDEs. The simplest possible case
corresponds to a function G independent of x. Then we have the only additional field w00,
since wij = 0, i, j > 0. We consider two examples of relation (37).

1. The relation (37) is chosen as follows:

F : w00(x) = exp

[
n∑

i=1

aix
i

]
, (39)

where aj are constant diagonal matrices. Then equation (36) with n = 0 yields

Aj = (a2 − a1B2 + [B2, v])−1(aj − a1Bj + [Bj , v]). (40)

Consequently, equations (33), for each particular choice of j , involve just the two fields v and
v1. Thus we need two equations of this type to close the system, say j = 3, 4, obtaining the
following system of two matrix equations in four dimensions for the matrix fields v, v1:

(L21v − [B2, v1])(a2 − a1B2 + [B2, v])−1 = (L31v − [B3, v1])(a3 − a1B3 + [B3, v])−1

= (L41v − [B4, v1])(a4 − a1B4 + [B4, v])−1.

(41)

2. The relation (37) is chosen as follows:

F : v1(x) = γ (x), (42)

where γ (x) is an arbitrary matrix function of x. In this case we choose

Aj(x) = (L21w
00(x))−1Lj1w

00(x), j = 3, 4, (43)

and we obtain the following system of two matrix equations in four dimensions for the two
matrix fields v,w00:

(L21v(x) − γ2(x))(L21w
00(x))−1 = (L31v(x) − γ3(x))(L31w

00(x))−1

= (L41v(x) − γ4(x))(L41w
00(x))−1, (44)

γj (x) ≡ [Bj , γ (x)], j = 2, 3, 4,

depending on the arbitrary forcing γ (x).
In section 4 we will see that the space of analytic solutions of these two systems is two

dimensional.
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3.2.2. Partially integrable n-dimensional PDEs. In this section we first derive nonlinear
PDEs in four dimensions, and then we turn to nonlinear PDEs in arbitrary dimensions.

Let G be defined by the following equations:

Gxj = αjGx1 , j = 1, . . . , n, (45)

where αj are constant diagonal matrices.
The special form (45) of G implies that the fields wj0(x), wjn(x) can be expressed in

terms of the fields w10(x), w11(x) respectively:

wj0(x) = αjw
10(x), wjk(x) = αjαkw

11(x) j, k = 1, . . . , n. (46)

Then all equations (33) and (36) reduce to the six equations (for j = 3, 4):

Lj1v − [Bj , v
1] = (L21v − [B2, v

1])Aj , (47)

Lj1w
00 − αjw

10 + w10Bj = (L21w
00 − α2w

10 + w10B2)A
j , (48)

Lj1w
10 − αjw

11 + w11Bj = (L21w
10 − α2w

11 + w11B2)A
j . (49)

Equations (49) can be viewed, for instance, as defining the matrix fields Aj , j = 3, 4;
substituting these definitions of Aj in equations (47) and (48), we obtain four matrix equations
for the five matrix fields v, v1, w00, w10, w11. Before performing such operations, it is
convenient to introduce a more compact notation defining the matrices

Ev
j := Lj1(v) − [Bj , v

1], ewk0

j := Lj1(w
k0) − αjw

1k + w1kBj , j = 3, 4, k = 0, 1.

(50)

Then equation (49) yields

Aj = (
Ew10

2

)−1
Ew10

j , j = 3, 4 (51)

and the nonlinear system (47), (48) takes the form

Ev
j

(
Ew10

j

)−1 = Ev
2

(
Ew10

2

)−1
, j = 3, 4, (52)

Ew00

j

(
Ew10

j

)−1 = Ew00

2

(
Ew10

2

)−1
, j = 3, 4. (53)

This four-dimensional system is not closed, consisting of four equations for the five
functions v, v1, w00, w10, w11. This indeterminacy is consistent with the fact that the
above equations are generated by the linear integral equation (6), which possesses a one-
dimensional space of homogeneous solutions. Therefore all the solutions of equations (52)–
(53), constructed by the dressing procedure, contain an arbitrary function f (x).

To fix this arbitrary function, we use the relation (37) which, for this example, reads

F(v, v1, w00, w10, w11) = 0. (54)

As we discussed above, this relation is largely arbitrary; the only requirement is that it should
give rise to a solvable equation for the function f (x) (see section 4.3 for more details on this
point).

We remark that the arbitrary relation (37) can be chosen in order to put equations (52)
and (53) into a differential polynomial form. If we choose, for instance, the bilinear relation

F : Ew10

2 = L21(w
10) − α2w

11 + w11B2 = T , (55)

where T is a constant matrix, multiplying equations (52), (53) from right by Ew10

j , one
transforms them into a differential polynomial form. In addition, if B2 = 0, the bilinear
relation becomes linear: w10

x2 − α2w
11 = T .
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We have established that, due to the novel hypothesis dim ker �̂ = 1, the dressing
algorithm allows one to construct a system of partially integrable PDEs in multi-dimensions
which includes one largely arbitrary relation among the fields. This is a novel and surprising
feature of the theory.

It is interesting to remark that equations (52), (53) admit the reduction

v = w00, v1 = w10, (56)

which follows imposing that G(λ; x) = C(λ; x), as a consequence of the choice αj = Bj . In
this case, equations (52), (53) reduce to the following two nonlinear PDEs:

Ew00

2

(
Ew10

2

)−1 = Ew00

3

(
Ew10

3

)−1 = Ew00

4

(
Ew10

4

)−1
(57)

for the three matrix fields w00, w10, w11, supplemented by the (largely) arbitrary relation

F(w00, w10, w11) = 0. (58)

A simple example of linear relation (58) is, for instance,

F : w11(x) = γ (x), (59)

where γ is an arbitrary function; then the nonlinear system is given by the two equations (57)
for the two fields w00, w10, with the arbitrary forcing γ (x) (it is the system (1)–(4) presented
in the introduction with a different notation).

As we shall see in section 4.4, the above nonlinear PDEs in four dimensions possess an
analytic solution space of dimension two.

One can generalize the above construction, to generate partially integrable PDEs in n
dimensions (n � 4), whose manifold of analytic solutions has dimension (n − 2). This
higher-dimensional generalization is associated with a more general equation for G.

For instance, in order to derive partially integrable PDEs in five dimensions, one chooses
G(λ; x) to be defined by the following equations:

Gxj =
2∑

k=1

αjkGxk , j > 2, (60)

where αjk are constant diagonal matrices. This special form implies that the fields
wj0, wj1, wj2, j > 2 can be expressed in terms of the fields wi0, wik, i, k = 1, 2:

wj0 =
2∑

s=1

αjsw
s0, wjk =

2∑
s=1

αjsw
sk, j > 2, k = 1, 2. (61)

Then the system (33), (36) reduces to the following 12 equations:

Lj1v − [Bj , v
1] = (L21v − [B2, v

1])Aj , j = 3, 4, 5, (62)

Lj1w
k0 −

2∑
i=1

αjiw
ki + wk1Bj = (L21w

k0 − wk2 + wk1B2)A
j , j = 3, 4, 5, k = 0, 1, 2.

(63)

Following the previous procedure, we use equations (63) for k = 1 to define the matrices Aj ,
and we substitute these definitions into equations (62) and (63) for k = 0. Defining the blocks:

Ev
j ≡ Lj1v − [Bj , v

1], j = 2, 3, 4, 5,

Ewk0

j ≡ Lj1w
k0 −

2∑
i=1

αjiw
ik + w1kBj , j = 3, 4, 5, k = 0, 1, 2,

Ewk0

2 ≡ L21w
k0 − wk2 + wk1B2, k = 0, 1, 2,

(64)
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we obtain

Aj = (
E

w10
2

)−1
E

w10
j , j = 3, 4, 5. (65)

Substituting (65) into (62) and (63), we obtain the following closed system of eight matrix
PDEs for the eight matrix fields v, v1, w00, w10, w20, w11, w12, w22, consisting of the following
five basic equations

Ev
j

(
Ew10

j

)−1 = Ev
2

(
Ew10

2

)−1
, j = 3, 4,

Ew00

j

(
Ew10

j

)−1 = Ew00

2

(
Ew10

2

)−1
, j = 3, 4, 5,

(66)

supplemented by two of the remaining equations (63), for instance, those for j = 3, 4, k = 2:

Ew20

j

(
Ew10

j

)−1 = Ew20

2

(
Ew10

2

)−1
, (67)

and by one (largely arbitrary) relation between the eight matrix fields:

F(v, v1, w00, w10, w20, w11, w12, w22) = 0, (68)

which is introduced in the same spirit as before. Other equations of the system (62) and (63)
can be treated as a symmetries of equations (66), (67).

This procedure can be generalized to an arbitrary number n of dimensions, introducing
the following equation for G:

Gxj =
n−3∑
k=1

αjkGxk , j > n − 3, (69)

where αjk are constant diagonal matrices and n � 4. The resulting nonlinear PDEs, possessing
the same block structure as their lower-dimensional analogies, will have dimensionality n and,
as we shall show in section 4.4, will be characterized by a manifold of analytic solutions of
dimension n − 2.

The possibility of increasing the dimensionality of the PDEs and, at the same time, to
increase proportionally the dimensionality of the manifold of solutions is due to the combined
effect of the hypothesis: dim ker�̂ = 1 and of the introduction of the fields wij . Indeed, (i)
the property (25) implies the multidimensional linear problems (30) and, via equations (51),
(65), the nontrivial mixing of the fields v, v1 and wij ; (ii) the matrix fields wij are associated
with the outer dressing function G, whose dimensionality can be increased without obstacles
(see the (n − 3)-dimensional equation (69)), while the matrix fields v, v1 are associated with
the matrix function C, an ingredient of the classical dressing method, whose dimensionality
is severely constrained (see the one-dimensional equations (10)).

Note that, by construction, the derived systems possess higher symmetries: equations (52),
(53) with j � 5 and equations (66), (67) with j � 6.

We end this section elaborating on the dimensionality of the space of analytic solutions
constructed in this section. Consider, as an illustrative example, the system of equations (57),
(59) in n = 4 dimensions for the two matrix fields w00, w10, and interpret x4 as time variable.
One can view the first equation Ew00

2

(
Ew10

2

)−1 = Ew00

3

(
Ew10

3

)−1
as defining, in principle, w10 in

terms of w00 and its partial derivatives w00
xj , j = 1, 2, 3. Replacing this relation into the second

equation Ew00

3

(
Ew10

3

)−1 = Ew00

4

(
Ew10

4

)−1
, one obtains a single equation for w00, depending

linearly on w00
x4 and nonlinearly on the other derivatives. Since, as we shall see in section 4.4,

our dressing algorithm generates analytic solutions depending on an arbitrary matrix function
of n − 2 = 2 variables, the space of analytic solutions of (57), (59) has dimension n − 2 = 2.
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Similar arguments can be used for the systems (41), (44) and (66)–(68), which exhibit a single
equation with first order derivative with respect to t = xn. Slightly different is a system
(52)–(54), in which two equations involve first order x4-derivatives of the two functions v and
w00. Accordingly, its solution space depends on two arbitrary functions of two variables, see
(114) of section 4.4. Thus we have established that the space of analytic solutions of all the
examples of this section is (n − 2) dimensional.

3.3. Compatibility of linear spectral problems versus nonlinear PDEs

It is well known that integrable PDEs arise as the compatibility of overdetermined systems of
linear problems for some eigenfunction U(λ; x). For instance, the N-wave system (18) in 2+1
dimensions is the integrability condition for the Lax pair (15).

Such a picture is lost in our case, since there is no direct algebraic way to construct the
nonlinear equations (32) as the compatibility condition of the linear systems (30). Indeed, the
compatibility between equations (30) for j �= k leads to the equation

U([Bk,Lj1v − [Bj , v1]] − [Bj , Lk1v − [Bk, v1]]) + (L21U)(Lk1Aj − Lj1Ak)

+ (L21U)x1(AkBj − AjBk) + (L21U)xkAj − (L21U)xj Ak = 0, (70)

from which one cannot infer anything, since the terms (L21U)xj and (L21U)xk are not
independent matrix functions of λ, being expressible in terms of L21U and U. But, to obtain
such expressions, one has to use additional structure, i.e., the dressing equation �̂Lj1U = 0.
Differentiating it with respect to xk and using equation (8), one obtains the homogeneous
equation

�̂[(Lj1U)xk + UBk(Lj1v − [Bj , v1])] = 0, (71)

which, due to (25), implies that

(Lj1U)xk = −UBk(Lj1v − [Bj , v1]) + (L21U)f jk, j �= k, (72)

where f nk are functions of x only. Substituting these relations (with j = 2) in (70), one
obtains

U
([

Bk,E
v
j − Ev

2Aj

] − [
Bj ,E

v
k − Ev

2Ak

])
+ (L21U)[Lk1Aj − Lj1Ak

+ f21(AkBj − AjBk) + f2kAj − f2jAk] = 0, (73)

and the independence of U and L21U implies

[
Bk,E

v
j − Ev

2Aj

] = [
Bj ,E

v
k − Ev

2Ak

]
, (74a)

Lk1Aj − Lj1Ak + f21(AkBj − AjBk) + f2kAj − f2jAk = 0. (74b)

We observe that equation (74a) does not imply directly the wanted equations (32). To obtain
them, one should consider, instead, the compatibility between the linear problem (30) and
equation (72), which leads to the following equation:

UBk

(
Ev

j − Ev
2Aj

)
+ (L21U)

(
A

j

xk + f 2kAj − f jk
) = 0. (75)

Again the independence of U and L21U implies the relations f jk = f 2kAj + A
j

xk , together
with the wanted equations (32).
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Summarizing, the linear three-dimensional problems (30) contain only partial
informations and their algebraic compatibility does not imply, alone, the nonlinear
equations (32).

4. Solution space

In the previous sections we have constructed partially integrable PDEs under the basic
assumption that the integral equation (6) admits nontrivial homogeneous solutions. In
this section we show (i) how to choose the inner dressing functions in order to satisfy this
assumption and, consequently, (ii) how to construct the corresponding manifold of particular
solutions of the partially integrable PDEs, expressed in terms of the dressing data �,�,C

and G. Note that, in our case, the novel dressing function G appears, in comparison with the
classical algorithm.

The solutions of equations (9) and (10) are

�(λ; x) =
∫

�0(λ, k) ekB·x dk, (76)

C(µ; x) =
∫

eqB·xC0(q, µ) dq, (77)

where k, q are scalar parameters and λ,µ are vector parameters of dimension n − 3. Thus
equations (8) yield

�(λ,µ; x) =
∫

�0(λ, k) e(k+q)B·xC0(q, µ)
dk dq

k + q
+ �(λ,µ), B1 = I. (78)

We remark that, in the case of S-integrable equations, the integration constant �(λ,µ) is
chosen to be δ(λ − µ). In our case, we need a special form for � (see (82) below).

It is quite standard to assume that the measure d�(λ) have support on an open domain
D of the λ-space, and on a disjoint discrete set of points D = {b1, . . . , bM},D ∩ D = ∅.
Correspondingly, we use the following notation for the dressing functions.

�(λ; x) =
{

φ(λ; x) = ∫
φ0(λ, k) ekB·x dk, λ ∈ D,

φn(x) = ∫
φn0(k) ekB·x dk, n = 1, . . . ,M, λ ∈ D,

(79)

C(λ; x) =
{

c(λ; x) = ∫
eqB·xc0(q, λ) dq, λ ∈ D,

cn(x) = ∫
eqB·xcn0(q) dq, λ ∈ D, n = 1, . . . ,M,

G(λ; x) =
{
g(λ; x), λ ∈ D,

gn(x), λ ∈ D, n = 1, . . . ,M
(80)

U(λ; x) =
{
u(λ; x), λ ∈ D,

un(x), λ ∈ D, n = 1, . . . , M,
(81)

and we choose �(λ,µ) in the form:

�(λ,µ) =




δ(λ − µ), λ, µ ∈ D,

σn(λ), λ ∈ D, µ ∈ D, n = 1, . . . ,M

σ̃n(µ), λ ∈ D, µ ∈ D, n = 1, . . . ,M

σnm, λ, µ ∈ D, n,m = 1, . . . , M.

(82)
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Then equation (6) reduces to the following system of M + 1 equations

φ(λ; x) =
M∑

j=1

∫
φ0(λ, k) e(k+q)B·xcj0(q)

dk dq

k + q
uj (x)

+
∫
D

φ0(λ, k) e(k+q)B·xc0(q, µ)u(µ; x)
dk dq d�(µ)

k + q

+
M∑

j=1

σj (λ)uj (x) + u(λ; x), λ ∈ D, (83)

φn(x) =
M∑

j=1

∫
φn0(k) e(k+q)B·xcj0(q)

dk dq

k + q
uj (x)

+
∫
D

φn0(k) e(k+q)B·xc0(q, µ)u(µ; x)
dk dq d�(µ)

k + q

+
M∑

j=1

σnjuj (x) +
M∑

j=1

∫
D

σ̃n(µ)u(µ; x) d�(µ), n = 1, . . . ,M, (84)

for the unknown matrix functions u(λ; x), λ ∈ D and uj (x), j = 1, . . . ,M .
Once the solution is obtained, one constructs the matrix fields v, v1, wij using

equations (13), (17), (34):

v(x) =
∫
D

c(λ; x)u(λ; x) d�(λ) +
M∑

k=1

ck(x)uk(x),

v1(x) =
∫
D

[
∂x1c(λ; x)

]
u(λ; x) d�(λ) +

M∑
k=1

[
∂x1ck(x)

]
uk(x),

w00(x) =
∫
D

g(λ; x)u(λ; x) d�(λ) +
M∑

k=1

gk(x)uk(x),

wj0(x) =
∫
D

[
∂xj

g(λ; x)
]
u(λ; x) d�(λ) +

M∑
k=1

[
∂xj

gk(x)
]
uk(x),

wij (x) =
∫
D

[
∂xi

∂xj
g(λ; x)

]
u(λ; x) d�(λ) +

M∑
k=1

[
∂xi

∂xj
gk(x)

]
uk(x).

(85)

4.1. The condition dim ker �̂ = 1

Now we have to provide the condition dim ker �̂ = 1. We base our considerations on
well-known facts of the theory of linear integral operators. If the homogeneous equation∫

�(λ,µ; x)H(µ; x) d�(µ) = 0 (86)

has a nontrivial solution, then its adjoint equation∫
H̃ (λ; x)�(λ,µ; x) d�(λ) = 0 (87)

has a nontrivial solution as well. If dim ker �̂ = 1, then the solution spaces of both
equations (86) and (87) are one dimensional.
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In our case, equation (87) reads

∫
H̃ (λ; x)

[∫ x1

dx1′
�(λ; x ′)C(µ; x ′) + �(λ,µ)

]
d�(λ), x ′ = x|x1→x1 ′ . (88)

In view of the independence of � and �, this equation is split into two equations:∫
H̃ (λ; x)�(λ; x ′) d�(λ) =

∫
H̃ (λ; x)�(λ,µ) d�(λ) = 0, (89)

which have to be satisfied for all x, x ′ and µ. This means that H̃ is independent of x and, due
to equation (76), the following two conditions must be satisfied:

∫
H̃ (λ)�0(λ, k) d�(λ) = 0, ∀k, (90)

∫
H̃ (λ)�(λ,µ) d�(λ) = 0, ∀µ (91)

for the existence of a nontrivial solution of the homogeneous equation (86).
It is important to remark that, at the same time, the condition (90) provides also the

solvability of the inhomogeneous integral equation (6). Therefore, no further constraint must
be imposed.

We consider a particular way to satisfy conditions (90) and (91), choosing

H̃ (λ) =
{

0, λ ∈ D,

Aj , λ ∈ D,
(92)

where the matrices Aj are constant and nonsingular, so that the conditions (90), (91) are
constraints only for the discrete parts of � and �:

M∑
j=1

Ajφj =
M∑

j=1

Aj σ̃j (µ) =
M∑

j=1

Aj σjn = 0, µ ∈ D, n = 1, . . . ,M. (93)

Due to (93), we have only (M − 1) independent equations in the system (84) and,
consequently, the solutions uj (x) are constructed up to an arbitrary function f (x).

We remark that terms containing σj , σij and σ̃j may disregarded in equations (83), (84).
Indeed, the terms containing σj in equation (83) can be incorporated in the first term of the
RHS. Similarly, the terms with σij and σ̃j in equation (84) can be incorporated in the first and
second terms of this equation. Thus we set σj = σ̃j = σij = 0 without loss of generality.

4.2. Degenerate kernel

The system of linear equations (83), (84), supplemented by the conditions (93), has a rich
manifold of solutions. To construct explicit solutions, we choose, as usual, a degenerate
kernel:

c0(q, µ) =
M̃∑

j=1

c̃1j (q)c̃2j (µ). (94)
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In this case, equations (83), (84) reduce to the following linear system of M + M̃ equations:

φ̃n(x) =
M∑

j=1

νnj (x)uj (x) +
M̃∑

j=1

ν̃nj (x)ũj (x) + ũn(x), n = 1, . . . , M̃, (95)

φn(x) =
M∑

j=1

ρnj (x)uj (x) +
M̃∑

j=1

ρ̃nj (x)ũj (x), n = 1, . . . ,M, (96)

for the matrix fields uj (x), ũk(x), j = 1, . . . ,M, k = 1, . . . , M̃ , where

ũk(x) =
∫
D

c̃2k(λ)u(λ; x) d�(λ), (97)

and where the given coefficients νnj , ν̃nj , ρnj , ρ̃nj , φ̃n are defined in terms of the spectral
functions:

νnj (x) =
∫

φ̃n0(k) e(k+q)B·xcj0(q)
dk dq

k + q
, ν̃nj (x) =

∫
φ̃n0(k) e(k+q)B·x c̃1j (q)

dk dq

k + q
,

ρnj (x) =
∫

φn0(k) e(k+q)B·xcj0(q)
dk dq

k + q
, ρ̃nj (x) =

∫
φn0(k) e(k+q)B·x c̃1j (q)

dk dq

k + q
,

φ̃n(x) =
∫
D

c̃2n(λ)φ(λ; x) d�(λ), φ̃n0(k) =
∫
D

c̃2n(λ)φ0(λ, k) d�(λ).

(98)

This algebraic system is obtained, as usual, by applying the operator
∫
D c2n(µ; x) d�(µ)·

to (83).
Having constructed, from (95), (96), the us(x) and the ũs(x), one obtains the eigenfunction

u(λ; x) via the formula:

u(λ; x) =
∫

φ0(λ, k) ekB·x dk −
M∑

j=1

ρj (λ; x)uj (x) −
M̃∑

j=1

ρ̃j (λ; x)ũj (x), (99)

where

ρj (λ; x) =
∫

φ0(λ, k) e(k+q)B·xcj0(q)
dk dq

k + q
, (100)

ρ̃j (λ; x) =
∫

φ0(λ, k) e(k+q)B·x c̃1j (q)
dk dq

k + q
. (101)

At last, one constructs the matrix fields v, v1, wij , solutions of the nonlinear PDEs of
section 3.2, from equations (85).

4.3. Fixing the arbitrary function f (x)

Due to the constraint (93), the solutions uj and ũj of the algebraic system (95) depend linearly
on an arbitrary matrix function f (x). Then, via (85), also the fields v, v1, wij depend linearly
on this arbitrary function. Such an arbitrary function is completely fixed by the largely arbitrary
relation among the fields.

To be more concrete, let us illustrate all these facts in the simplest case: c0(q, µ) = 0,

M = 2. The constraint (93) implies that ρ2j = −A−1
2 A1ρ1j , j = 1, 2; then, from the

homogeneous version of (96):

0 = ρ11(x)H1(x) + ρ12(x)H2(x), 0 = ρ21(x)H1(x) + ρ22(x)H2(x), (102)
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one verifies that the second equation is consequence of the first, while the first equation admits
the solution

H1(x) = ρ−1
11 (x)f (x), H2(x) = −ρ−1

12 (x)f (x) (103)

depending linearly on the arbitrary matrix function f (x) (compare with (26)). The general
solution of the inhomogeneous algebraic system (96) is then given by

u1(x) = 1
2ρ−1

11 (x)φ1(x) + ρ−1
11 (x)f (x), u2(x) = 1

2ρ−1
12 (x)φ1(x) − ρ−1

12 (x)f (x), (104)

depending on the arbitrary matrix function f (x) in a linear way as well (compare with (27)).
Consequently, such a linear dependence on f (x) will appear, via (85), also in the matrix fields
v, v1, wij .

We remark that one could always identify f (x) with one of the uj ’s, say, with u1(x),
obtaining

u1(x) = f (x), u2(x) = ρ−1
12 (x)[φ1(x) − ρ11(x)f (x)], (105)

this identification, which clearly leads to a less symmetric formula than (104), seems to become
more convenient when M > 2.

Now we show, always in the simplest case: c0(q, µ) = 0,M = 2, how the arbitrary
function f (x) gets fixed imposing the relation (37), which we choose in one of the forms
pointed after equation (38).

Equations of section 3.2.1. For the equations of this section, choose g(λ) = δ(λ − a).
Then, using equation (85) for w00, the constraint (39) becomes the linear equation

h0(x) +
[
h1(x)ρ−1

11 (x) + h2(x)ρ−1
12 (x))

] φ1(x)

2

+
[
h1(x)ρ−1

11 (x) + h2(x)ρ−1
12 (x))

]
f (x) = exp

(
n∑

i=1

aix
i

)
(106)

for f (x), where

hj (x) = −
∫
D

g(λ; x)ρj (λ; x) d�(λ) + gj (x), j = 1, 2,

h0(x) =
∫
D

g(λ; x)φ(λ; x) d�(λ) (107)

yielding the following explicit formula for f :

f (x) = [
h1(x)ρ−1

11 (x) + h2(x)ρ−1
12 (x))

]−1

×
[

exp

(
n∑

i=1

aix
i

)
− h0(x) − [

h1(x)ρ−1
11 (x) + h2(x)ρ−1

12 (x))
] φ1(x)

2

]
.

(108)

Analogously, using equation (85) for v1, the constraint (42) becomes a linear equation for
f (x), whose explicit solution is

f (x) = [
h1(x)ρ−1

11 (x) + h2(x)ρ−1
12 (x))

]−1
[
γ (x) − [

h1(x)ρ−1
11 (x) + h2(x)ρ−1

12 (x))
] φ1(x)

2

]
,

(109)

where now

hj (x) =
∫

q eqB·xcj0(q) dq, j = 1, 2. (110)



Partially integrable systems in multi-dimensions by a variant of the dressing method 5843

Equations of section 3.2.2. In this case, equation (69) implies that

G(λ; x) =
∫
D

exp


n−3∑

j=1

λ′
j

(
xj +

n∑
k=n−2

αkjx
k

)
G0(λ

′, λ) d�(λ′). (111)

If, in particular, n = 4, as in equation (45), then the reduction G = C is admissible,
identifying αj = αj1 = Bj and G0 = C0 (see (77)), and one obtains the nonlinear PDEs (57),
supplemented by the relation (68).

If this relation is an arbitrary linear relation between fields, it leads to a linear equation
for f (x). For instance, if we choose (59), then, using equation (85) for w11, the constraint
becomes a linear equation for f (x), whose explicit solution is

f (x) = [
h1(x)ρ−1

11 (x) + h2(x)ρ−1
12 (x))

]−1

[
γ (x) −

∫
D

gx1x1(λ; x)φ(λ; x) d�(λ)

− [
h1(x)ρ−1

11 (x) + h2(x)ρ−1
12 (x))

] φ1(x)

2

]
, (112)

where

hj (x) = −
∫
D

gx1x1(λ; x)ρj (λ; x) d�(λ) + gj x1x1(x), j = 1, 2. (113)

In a similar way, one can treat more general relations in higher dimensions n.

4.4. Dimensionality of the solution space

The dimensionality of the space of analytic solutions generated by our dressing scheme is
essentially defined by the dimensionality of two expressions∫

C(λ; x)�(λ; x) d�(λ), (114a)

∫
G(λ; x)�(λ; x) d�(λ). (114b)

The first term, involving the ‘inner’ dressing functions C(λ; x) and �(λ; x), appears also in
the classical dressing; its dependence on the space-time coordinates is severely constrained
and, consequently, it carries dimensionality two (see (24) and the considerations made there).
The second term involves the ‘outer’ dressing function G(λ; x), a novel feature of our dressing
procedure; its dependence on the space-time coordinates is instead largely arbitrary, playing a
crucial role in increasing the dimensionality of the solution space through the following novel
mechanism.

As we have seen in section 4.3, from the largely arbitrary relation among the fields one
constructs f (x) in terms of the spectral representations of the fields v, v1, wij . If such relation
involves the fields wij , whose spectral representations involve expressions like (114b), then
the dimensionality of f (x) is not severely constrained. Since the matrix fields v, v1, wij ,
solutions of our PDEs, depend linearly on f (x), their analytic solution space is not severely
constrained too. Using this argument, it is possible to establish easily the dimensionality of
the space of analytic solutions of our PDEs.

In section 3.2.1, the first term has higher dimensionality than the second, since G does
not depend on x; it follows that the dimensionality of the space of analytic solutions of the
four-dimensional PDEs constructed there is two, like for integrable PDEs in 2+1 dimensions.
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In section 3.2.2, the outer dressing function is (111) and equation (114b) reads (choosing
G0(λ

′, λ) = δ(λ′ − λ)):

∫
D

exp


n−3∑

j=1

λj

(
xj +

n∑
k=n−2

αkjx
k

)
�0(λ, k) exp[k(B · x)] dk d�(λ). (115)

Since λ is a vector parameter of dimension n − 3, and k is a scalar parameter, the above
expression has dimension n − 2, being parameterized by the arbitrary function �0(λ, k) of
n − 2 variables. Consequently, n − 2 is the dimension of the constructed f (x), and of all the
fields appearing in the nonlinear PDEs.

Summarizing, the solutions we constructed depend on an arbitrary function of n − 2
variables (114b) and on an arbitrary function of two variables (114a). Then, in the exceptional
case n = 4, the solution may depend on two arbitrary functions of two variables. This
conclusion is valid for all the examples presented in the paper.

5. Conclusions

In this paper we have generalized the dressing method to construct systems of nonlinear PDEs
in n dimensions (n > 3) (i) possessing a manifold of analytic solutions of dimension n − 2
(a very large, but not complete, manifold), and (ii) possessing higher symmetries. But the
constructed PDEs do not seem to be the compatibility condition for overdetermined systems
of linear PDEs, a characterizing feature of completely integrable systems in lower dimensions.

The above properties indicate that they are examples of partially integrable PDEs in
multi-dimension possessing a very large, but not complete, space of analytic solutions.

A natural generalization of the algorithm presented in this paper consists in studying the
case in which the integral operator �̂ of the dressing problem exhibits a higher-dimensional
kernel:

dim ker �̂ = Dker > 1. (116)

In this case, equation (30) is replaced by

Lm1U(λ; x) +
Dker+1∑
n=2

(Ln1U(λ; x))Amn(x) = 0, m > Dker + 1, (117)

and one needs Dker conditions on U to define the functions Amn. The study of the structure
of the associated partially integrable equations, and of the dimensionality of the associated
analytic solution space is postponed to future investigations.
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